
l3gui(1)

Michael Hohn, mhhohn@users.sf.net

April 17, 2008

mailto:mhhohn@users.sf.net


section

1 NAME

l3gui - graphical environment for interacting with l3 programs and data.

2 SYNOPSIS

l3gui [–help | -h] [–version] [-f FILE | –file=FILE] [-s STATEFILE | –statefile=STATEFILE]
[-i | –interactive] [-d | –developer]

3 DESCRIPTION

The l3gui(1) command starts an interactive graphical interface for editing, viewing
and executing l3 language scripts and viewing and editing the data produced by the
scripts. See l3lang(1) for a language description.

Standard facilities include interactive toplevels for l3 and Python, and a worksheet-
style interface for l3 scripts providing editing facilities and the usual open/edit/save
options.

The l3 language introduces several new features to support use from a graphical in-
terface; they are:

• A script is used as its own data browser. Every expression is turned into an object
with inspection facilities. Both the expression and the value(s) computed by the
expression can be accessed through the script’s text.

• Scripts can evolve, even after execution. The combination of need-based eval-
uation, lexical scoping and persistence allows l3 scripts to evolve; they can be
added to without re-running existing code, and references to all previouly com-
puted data are available.

• Scripts can nest arbitrarily. Lexical scoping allows for arbitrarily nested (static)
namespaces and avoids name collisions. Every function call introduces a new
(dynamic) scope, so multiple calls to the same function do not produce naming
conflicts, even when file names are used. Multiple calls to a function are tracked
separately, so all values computed by all calls to a function can be inspected.

2

file:l3lang.html


• A data flow graph can be generated from a script. In this view, named data are
emphasized, and data interdependencies shown. Loops cause no “explosion” of
the data flow graph.

4 OPTIONS

–help, -h

Print this documentation and exit.

–version

show program’s version number and exit

-f FILE, –file=FILE

Load this l3 script.

-s STATEFILE, –statefile=STATEFILE

Load this l3 state file.

-i, –interactive

Go to Python console on exit. This allows moving between Python and the
gui. To restart the gui, use gtk.main()

-d, –developer

Import all l3 modules (from ... import*) when using -i. Allows for inter-
active updates.

5 USAGE

The typical l3 usage cycle is very similar to scripting sessions:

1. Select scripts / functions from a library

2. Assemble custom scripts on the canvas

3. Adjust parameters and scripts

4. Run the script

5. Examine values

6. Repeat the process

3



The l3 gui provides several features to simplify high-level script use, full editing for
control over detail, make(1)-like incremental evaluation and persistence to avoid un-
necessary repetition, and data examination through the scripts themselves.

While the l3 gui could be used for script writing (via graphical assembly), it is meant
for script use and user interaction. User-assembled scripts should be high-level and
consist mostly of topic-specific blocks (with parameters), loops, functions and condi-
tionals.

Practical use of the l3 gui requires a library callable from Python and a collection of
simple Python/l3 drivers (scripts with parameters) for that library.

For writing such drivers, use l3lang(1) directly, via a text editor.

For more complex programming, use Python to implement a library, or a connection
to a library.

The inteded use of l3gui(1), with libraries and driver scripts already present, is illus-
trated via the examples at http://l3lang.sf.net.

The rest of this manual page describes the mechanics of the interface.

6 INTERFACE STRUCTURE

The interface starts with two canvases and some support structures as shown in this
figure.

4



From top to bottom, there is the menu bar, two canvas zoom selectors, the two can-
vases, and a status line. The left canvas is the library canvas, presenting examples
from introductory to complete program, and l3 templates used to assemble custom
scripts. The right canvas is the user work area for assembling, editing, running and
examining scripts and data. The canvases can be scrolled via the scrollbars, or via
button-1-drag on a canvas.

The relative sizes of the canvases can be adjusted by dragging the vertical separator
between them. The horizontal separator between the canvases and status line can be
moved up to reveal a Python console and any l3 consoles present. See also the View
menu entries. Fully exposed, the interface looks like the following.

5

file:images/l3gui-1.png


The menubar entries are as follows; more details are found later in this manual.

File menu

import script

Load a script from a file. The script is added to the session.

save session to

Save the current session to file.

load session

Load a prior session from file. This replaces the current session

exit

Exit the gui unless -i was used; with -i, starts Python on the con-
sole.

Edit menu

l3 gui console

Run an interactive l3 toplevel in an area below the canvas, insert
expressions in a single Program on the canvas.

6

file:images/l3gui-2.png


l3 terminal console

Run an interactive l3 toplevel on the console, insert expressions
in a single Program on the canvas.

l3 terminal console, one program/expr

Run an interactive l3 toplevel on the console, insert every expres-
sion as a separate program on the canvas.

View menu

show / hide python console

toggle visibility of areas below the canvases.

show program only

Hide the left canvas and areas below the canvas.

Help menu

About l3

Show version information.

l3 manual

Show references to this manual.

l3 License

Display the license for l3.

7 MOUSE AND KEYBOARD

The mouse buttons are referred to as button-1 through button-3. On a right-handed
mouse, button-1 is the left button, button-2 is the scrollwheel button, and button-3
is the right button.

The keyboard’s Ctrl and Alt keys are called control and alt here.

8 ITEM SELECTION AND HANDLING

The currently selected items are outlined in orange. Items are selected via the mouse
in two ways.

button-1 on item

Select the item under the pointer, clear existing selection.

7



control + button-1 on item

Add the item under the pointer to the existing selection.

A selection can be copied to the canvas, or moved into another expression.

button-2 on canvas

Insert a copy of the current selection; if there is no selection, try to parse
the text on the clipboard and insert the resulting script.

button-2 on list item separator

Move the current selection into the list at this location (the top item when
multiple items are selected).

The selection can be cleared.

button-1 on canvas (without dragging)

Clear the selection.

9 LOADING AND SAVING SESSIONS

The session state includes all visible scripts and data, their display positions, and all
data accumulated during program execution.

The current session can be saved when no program is executing, via file > save
session to.

Restoring a session from a file replaces the current session, which must be saved if it
is to be kept. To restore a session, use file > load session.

10 AQUIRING PROGRAMS

The gui provides several ways to get scripts for further assembly and use. Once im-
ported, the script is treated as a structure, although the display still resembles the
original text. Most expressions display in the original’s text form, but source code
lines are separated with a narrow horizontal marker that can be used for insertion. All
imported scripts are put into a Program block to allow for collapsing/expanding and
execution of the script.

8



10.1 Copying from the procedure library

Prepackaged functionality provided for l3 is kept in the left canvas as outline. Select
the parts of interest via button-1, copy them to the canvas via button-2, and adjust
parameters as described in section 11.

10.2 Pasting text

Short script fragments copied from another application can be pasted via button-2
on the canvas if no other expression is currently selected. To paste text, first use
button-1 on the canvas to clear its selection, then button-2 to paste the text.

The pasted text is parsed and checked for valid syntax, but not executed. If the syntax
is valid, a script is inserted as a Program at the mouse location. Otherwise, a single
string holding the pasted text is inserted.

Example 1 Successful pasting of script

The script

a = 1
b = 2
print b-a

looks like

after pasting via button-1 (to clear any other selection) followed by button-2.

Example 2 Unsuccessful pasting of script

The script

a = 1
b = 2
print b - / a

9

file:images/l3gui-3.png


contains a syntax error and looks like

after pasting via button-1 (to clear any other selection) followed by button-2.

10.3 Importing from file

For writing larger scripts from scratch, using a text editor with support for Python
programs is strongly recommended. See emacs(1) or vim(1). Once such a script is
written (and ideally, tested on trivial data using Python), it can be imported via file
> import script.

10.4 Recording input and output from console interaction

For more interactive use, command-line input can be used. Using the menu > edit
> l3 terminal console selection, an interactive l3 toplevel is run on the console the
gui was started from. At the same time, a new empty Program: is inserted on the
canvas. Expressions can be entered at the toplevel in the same way as in Python, and
are evaluated when complete. If evaluation succeeds, the expression is appended to
the Program: and the l3 structural manipulations are then available; in particular, the
value(s) may be examined.

Example 3 Using the toplevel with the gui.

The toplevel is is started and expressions tried. The Program accumulates the history
of successful commands, while the values accumulated by the loop are inserted via the
gui menu.

10

file:images/l3gui-4.png


At any time expressions may be inserted in the history through the gui, and the
Program re-run. As for any l3 program, only the inserted expression is run, provid-
ing a way to evolve running programs through insertion, not only appending.

11 EDITING SCRIPTS

The editing facilities of l3gui are focused on structural editing – insertion and removal
of expressions, and the selection of values associated with expressions. These opera-
tions can be done any time, but are most useful after a script has been run (whether
successfully or not), and allow incremental refinement of scripts.

Notably absent is an advanced text-editing facility, as there are better and established
tools for writing scripts. For the simple textual edits required (such as setting param-
eter values and other form-filling), a simple edit window is used.

11



Most expressions display as text, but outlines, programs, lists, functions, conditionals
and loops can display in long form.

Programs, lists and tuples displayed in long form have explicit item separators that
allow insertion of items in the position of the separator, by selecting an item elsewhere
and using button-2 on the separator.

Items already in the list/tuple can be dragged out via button-1-drag.

Example 4 Editing long-form expressions

Paste the expression

1 + 2

and via button-1 select the 1; this highlights just 1. On the canvas next to the program,
press button-2; a copy of the 1 is put at the pointer location. Repeat this for the 2 to
get something like the following.

To insert the 1 into the program, select the copy via button-1 and click on the grey
bar above the 1+2 with button-2.

Repeat this for the 2 to get a new program:

Text display allows selecting of individual subexpressions, but editing is always done
on the entire textual expression. Double-clicking button-1 on an expression pops up
a simple edit window. In the window, ESC or Cancel abort the edit, while Ctrl-Enter
or Ok commits the change.

12



Note In the edit window, replacing a script expression with another containing the
same text and pressing Ok is not the same as pressing Cancel. Replacing an expres-
sion always removes the original and inserts the new one, even if the text is identical.
And a new expression will be evaluated again when its containing Program: is run.
See section 15.

12 THE EXPRESSION MENU

Prior sections discuss obtaining and manipulate expressions. Further operations are
specific to that expression, and are available through the expression’s menu, accessed
via Button-3.

The following is a summary of the menu entries. Their usage details follow.

12.1 Common entries

Every expression has these menu entries.

add comment

Add a comment to the expression. This inserts the template “double-click
to edit” which can be edited.

copy to clipboard (as raw text)

Form a pretty-printed string representation of this expression and copy it
to the clipboard.

delete

Delete this expression.

delete selected

Delete all selected expressions. This entry is for convenience and may not
affect its expression.

dump code

(developer) Print an AST dump of the expression to the console, including
ID and timestamp for every node.

dump values

(developer) Print all values of the expression the expression to the console,
with indentation indicating clone structure.

13



export values as string

Print all values of the expression to the console.

insert values as l3 list

Insert a vertical list holding all the values associated with the selected ex-
pression.

insert values as l3 list list

Insert a near-square list of lists holding all the values associated with the
selected expression. Makes better use of display area.

evaluate locally

(developer) Start a new Python toplevel at the bottom of the gui, with self
bound in its environment.

evaluate locally, use console

(developer) Start a new Python toplevel on the console, with self bound in
its environment.

exit

Exit the gui unless -i was used; with -i, starts Python on the console.

hide

Display this expression in a compact, single-line form.

select value

Deprecated. Value selection is done using the selection. See subsection 14.2.

12.2 Additions for outlines/programs

Only a Program (outline) expression has a Run menu entry, so to execute a fragment of
code that is not already inside a program requires putting it in one.

run code

Execute this program.

view full contents

Show this outline, its comment, and the full contents. Program editing is
only possible in this view.

view nested outlines

Show this outline, its comment, and all contained outlines.

14



view this level only

Collapse the outline to this level.

show values written

Show all names assigned to in this outline.

show values read

Show all names referred to in this outline.

12.3 Additions for the selection

The selection is the orange outline surrounding one or more expressions; in addition
to highlighting items, it also provides some features of its own.

print values in context

When an expression is used in loops or multiple function calls, values can
be viewed more selectively by narrowing to one of the loops/function calls.
See subsection 14.2.

item screenshot to /tmp/foo.png

For development. Take a screenshot of just this item, save to /tmp/foo.png.
Requires the canvas to be at the upper left scroll limits.

12.4 Additions for list item separators

The list item separators serve to insert items, but can also be used to select a range of
items between two of them.

set mark

Set end position for range selection.

select region (from here to mark)

Select all items in the range.

12.5 Additions for strings representing local files

For files holding known data of certain type, special viewing / insertion actions are
available.

First are those calling external programs to view files.

.spi xmipp_show -sel <path>

15



Display spider selection file via xmipp_show

.spi xmipp_show -vol <path>

Display spider volume file via xmipp_show

.txt $EDITOR <path>

Open a plain text file in an external editor.

The following files types are directly handled in l3.

.png view image

Insert a view of the image on the canvas.

.hdf file insert as l3 list

For HDF files using a simple list-of-images structure (eman2), display a
vertical list of images.

.hdf file insert as l3 list list

For HDF files using a simple list-of-images structure (eman2), try to display
a square array of images to maximize use of canvas area.

12.6 Additions for names with string values representing local files

Name expression (a, "a", and a.b) with string values that represent local files have
entries to view those files.

.any insert (file path) list

Insert the list of files represented by the name.

.png insert (file path, image) list

Insert the list of (file name, image) tuples represented by the name.

12.7 Additions for ‘Map‘s

examine dir

Treat a map like a directory and list all names bound in it.

print working directory (pwd)

(deprecated) For a Subdir, show its name.

16



12.8 Additions for some native Python values

Values representing images (certain numpy arrays) have some simple display adjust-
ments

set image size as default

Set the current scale size as default for future image insertions.

shrink image 40%

Reduce this image by 40%. Does not affect future image insertions.

enlarge image 40%

Enlarge this image by 40%. Does not affect future image insertions.

13 RUNNING PROGRAMS

Code in l3 is never executed automatically. Further, execution can only start from
programs (which display as outlines).

Example 5 Running a program

Paste the expression

3 - 2

Then right-click (button-3) on Program > run code. The text (1, INT) is shown on
the console, where INT is some integer. The 2 is highlighted in an orange outline.

Because expressions and outlines can nest, it is possible to start execution from the
“inside” of a program. This is not necessary because l3 evaluation skips already-
executed expressions, but it can be convenient while working on a nested script. If
needed values have not been calculated, an error is given and execution of the pro-
gram stops at the error location.

14 SELECTING DATA

Data are the result of expression evaluation. L3 attaches a datum to the expression
that created it, allowing point-and-click examination of data.

17



14.1 Simple data selection

For scripts with single-level loops or function calls, a single item selection is sufficient
to view data.

Example 6 Selection of datum value.

Paste and run the program

3 - 2

Then select the - menu (button-3) and dump values. Note that there is only one
value, 1.

Expressions inside loops or tail calls may have more than one value, so every ex-
pression’s menu has a dump values entry that prints all values associated with the
expression to the terminal.

Example 7 Selection of data values.

Paste and run the program

for ii in [1,2,3]:
ii - 3

Then select the - menu (button-3) and dump values. Note that there are now three
values.

Instead of printing values, values can be wrapped as l3 expressions and inserted on
the canvas, using the insert values as menu entry. In this form, values are ready to
be used in or by other scripts.

Wrapped values are referenced, not copied.

Example 8 Insertion of data values.

Paste and run the program

for ii in [1,2,3]:
ii - 3

To import these values for further editing, select the - menu (button-3) and insert
values as l3 list. This inserts a list containing the values.

18



When a data to PNG converter is available, the bitmap image is displayed by l3gui
instead of the textual representation of the data. These custom viewers are never
interactive, and are intended to provide a quantitative view only. The image is manip-
ulated just like any other value.

Example 9 Insertion of data thumbnails.

Paste the script

inline "import numpy as N"
N.random.ranf( (35, 14) )

and run the program. The array data is printed to the console. Now right-click N
and select insert values as l3 list. This inserts a list with one entry, the image.
Right-click the image, select enlarge image 40% several times. This will look like the
following.

For more detailed data examination or manipulation, data must be saved to file and
external processes used. File names should be formed via e.g.

’_plot-%d.png’ % new_id()

so their names are always unique. l3 makes no attempt at tracking the data passed
out this way; instead, the data is assumed CONSTANT. If an external program is used
to modify data, the new data should be written to a new file.

19

file:images/l3gui-5.png


14.2 Narrowing the data selection

When loops are nested or functions called from multiple sources, the simple selection
mechanism displays all values. This is usually not desired, so the selection can be
narrowed.

Example 10 Selection narrowed to single function call

The following script defines a simple iteration scheme to (very) roughly approximate
sqrt(x), and tries this scheme using two starting values.

# Sqrt iteration with error bound.
def try(x, xn):

if abs(xn**2 - x) > 0.0001:
xnp1 = 1.0 / 2 * (xn + x / xn)
return try(x, xnp1)

else:
return xn

# First try.
try(9.0, 5.0)

# Try a different starting point.
try(9.0, 8.0)

To examine the values of xnp1 generated by the first try, select xnp1 via left-click, and
add try(9.0, 5.0) to the selection via control-left-click. Then use a right-click on
xnp1 and choose insert values as l3 list to get the following.

20



15 INCREMENTAL SCRIPT DEVELOPMENT

Script execution and script writing can be mixed using the l3 gui, without saving
intermediate values to files or incurring a time penalty for rerunning all scripts.

A program that ran successfully may reveal the need for more information. Instead
of writing a new script replicating many of the same iterations and data references,
the new relevant expressions can be added to the existing program, and the resulting
program run. In the rerun, only the additions are executed.

Note on make(1) This is similar to the behavior of make(1), in which targets are
only updated when their dependencies require it. Unlike make(1),

21

file:images/l3gui-6.png


• there is only one “target”, the successfull execution of the program;

• there is no search for prerequisites; variables must be bound before use.

• scripts can be nested, and additions can be made inside loops or functions.

16 ERRORS

Errors in scripts return control to the user for correction, with the faulty expression
highlighted in orange. The expression can be replaced with a correct one, and the
program run again.

Execution resumes from the fixed expression; previously run code and values produced
by it are reused.

Example 11 Fixing a run-time error inside a program

This script has a small typo in a branch executed late in the script’s execution.

inline(’from time import sleep’)
for work in range(0, 4):

# A long-running command...
sleep(1.01)
print "%d%% done" % (100.0 * work / (4-1))
if (work == 2):

# ... with a small error in later execution
worj

Running this script takes about 3 seconds and results in the console output

0% done
33% done
66% done
Traceback (most recent call last):
...
...
l3lang.ast.UnboundSymbol: ’No binding found for: worj’

and the following display:

22



Fixing the error (double-click button-1 on worj and change it to work) and running
again takes only the remaining second and produces only the output

100% done

indicating that prior parts have not been re-run.

17 FILES

$HOME/.l3lang/l3rc, ./.l3rc

18 ENVIRONMENT VARIABLES

L3HOME Directory containing l3lang/ and l3gui/

EDITOR The executable name of the external editor to use.

19 BUGS

Many annoyances; this is version 0.3.1 after all.

This manual page contains examples.

23



20 SEE ALSO

l3lang(1), l3gui(1)

21 AUTHOR

Michael Hohn, mhhohn@users.sf.net

22 COPYING

Copyright © 2004-8 Lawrence Berkeley National Laboratory. l3 is released under the
BSD license. See license.txt for details.

24


	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	USAGE
	INTERFACE STRUCTURE
	MOUSE AND KEYBOARD
	ITEM SELECTION AND HANDLING
	LOADING AND SAVING SESSIONS
	AQUIRING PROGRAMS
	Copying from the procedure library
	Pasting text
	Importing from file
	Recording input and output from console interaction

	EDITING SCRIPTS
	THE EXPRESSION MENU
	Common entries
	Additions for outlines/programs
	Additions for the selection
	Additions for list item separators
	Additions for strings representing local files
	Additions for names with string values representing local files
	Additions for `Map`s
	Additions for some native Python values

	RUNNING PROGRAMS
	SELECTING DATA
	Simple data selection
	Narrowing the data selection

	INCREMENTAL SCRIPT DEVELOPMENT
	ERRORS
	FILES
	ENVIRONMENT VARIABLES
	BUGS
	SEE ALSO
	AUTHOR
	COPYING

